Apache Ignite: What is Ignite?

Apache Ignite(TM) In-Memory Data Fabric is a high-performance, integrated and distributed in-memory platform for computing and transacting on large-scale data sets in real-time, orders of magnitude faster than possible with traditional disk-based or flash-based technologies.

apache-ignite

FEATURES

You can view Ignite as a collection of independent, well-integrated, in-memory components geared to improve performance and scalability of your application. Some of these components include:


Apache Ignite APIs

Apache Ignite has a reach set of APIs that are covered throughout the documentation. The APIs are implemented in a form of native libraries for such major languages and technologies as Java, .NET and C++ and by supporting a variety of protocols like REST, Memcached or Redis.

The documentation that is located under this domain is mostly related to Java. Refer to the following documentation sections and domains to learn more about alternative technologies and protocols you can use to connect to and work with an Apache Ignite cluster:

Fork It on GIT

Apache Commons DbUtils Mini Wrapper

This is a very small DB Connector code in Java as a wrapper class to Apache DBUtils.

The Commons DbUtils library is a small set of classes designed to make working with JDBC easier. JDBC resource cleanup code is mundane, error prone work so these classes abstract out all of the cleanup tasks from your code leaving you with what you really wanted to do with JDBC in the first place: query and update data.

Some of the advantages of using DbUtils are:

  • No possibility for resource leaks. Correct JDBC coding isn’t difficult but it is time-consuming and tedious. This often leads to connection leaks that may be difficult to track down.
  • Cleaner, clearer persistence code. The amount of code needed to persist data in a database is drastically reduced. The remaining code clearly expresses your intention without being cluttered with resource cleanup.
  • Automatically populate Java Bean properties from Result Sets. You don’t need to manually copy column values into bean instances by calling setter methods. Each row of the Result Set can be represented by one fully populated bean instance.

DbUtils is designed to be:

  • Small – you should be able to understand the whole package in a short amount of time.
  • Transparent – DbUtils doesn’t do any magic behind the scenes. You give it a query, it executes it and cleans up for you.
  • Fast – You don’t need to create a million temporary objects to work with DbUtils.

DbUtils is not:

  • An Object/Relational bridge – there are plenty of good O/R tools already. DbUtils is for developers looking to use JDBC without all the mundane pieces.
  • A Data Access Object (DAO) framework – DbUtils can be used to build a DAO framework though.
  • An object oriented abstraction of general database objects like a Table, Column, or Primary Key.
  • A heavyweight framework of any kind – the goal here is to be a straightforward and easy to use JDBC helper library.

Wrapper:

HackerRank: Circular Array Rotation

Problem

John Watson performs an operation called a right circular rotation on an array of integers, [a(0),a(1).a(2)...a(n-2),a(n-1)]. After performing one right circular rotation operation, the array is transformed from

[a(0),a(1).a(2)...a(n-2),a(n-1)]

to

[a(n-1),a(0),a(1).a(2)...a(n-2)].

Watson performs this operation k times. To test Sherlock’s ability to identify the current element at a particular position in the rotated array, Watson asks q queries, where each query consists of a single integer, m, for which you must print the element at index in the rotated array (i.e., the value of a(m)).

Input Format

The first line contains space-separated integers, n, k, and q, respectively.
The second line contains space-separated integers, where each integer i describes array element a(i)(where 0 <= i <= n).
Each of the q subsequent lines contains a single integer denoting m.

Constraints

  • 0 <= i <= 10^5
  • 0 <= a(i) <= 10^5
  • 0 <= k <= 10^5
  • 0 <= q <= 500
  • 0 <= m <= N-1

Output Format

For each query, print the value of the element at index m of the rotated array on a new line.

Sample Input
3 2 3
1 2 3
0
1
2
Sample Output
2
3
1

Explanation

After the first rotation, the array becomes [3,1,2].
After the second (and final) rotation, the array becomes [2,3,1].

Let’s refer to the array’s final state as array b. For each query, we just have to print the value of b(m) on a new line:

  • m=0 , so we print 2 on a new line.
  • m=1 , so we print 3 on a new line.
  • m=2 , so we print 1 on a new line.

Soluton

HackerEarth: Battle Of Bots 6: Draughts

Problem:

Sample Game

Draughts is a two player board game which is played on a 8X8 grid of cells and is played on opposite sides of the game-board. Each player has an allocated color, Red ( First Player ) or White ( Second Player ) being conventional. Players take turns involving diagonal moves of uniform game pieces in the forward direction only and mandatory captures by jumping over opponent pieces.

Rules:

  • Player can only move diagonally to the adjacent cell and in forward direction, if the diagonally adjacent cell is vacant.
  • A player may not move an opponent’s piece.
  • If the diagonally adjacent cell contains an opponent’s piece, and the cell immediately beyond it is vacant, the opponent’s piece may be captured (and removed from the game) by jumping over it in the forward direction only.
  • If a player made a jump, then its mandatory to keep on jumping as long as the jump is possible.
  • Player cannot move to the diagonally adjacent cell once the player made a jump.

The game will end when any of the players don’t have any move left. At the end of the game the player with majority of pieces will win.

We will play it on an 8X8 grid. The top left of the grid is [0,0] and the bottom right is [7,7].

Input:
The input will be a 8X8 matrix consisting only of 0o2. Then another line will follow which will contain a number –  1 or 2 which is your player id. In the given matrix, top-left is [0,0] and bottom-right is [7,7]. The x-coordinate increases from left to right, and y-coordinate increases from top to bottom.

The cell marked 0 means it doesn’t contain any stones. The cell marked 1 means it contains first player’s stone which is Red in color. The cell marked 2 means it contains second player’s stone which is white in color.

Output:
In the first line print the coordinates of the cell separated by space, the piece he / she wants to move.
In second line print an integer N, number of steps or jumps the piece will make in one move.
In the next N lines print the coordinates of the cells in which the piece will make jump.
You must take care that you don’t print invalid coordinates. For example, [1,1] might be a valid coordinate in the game play if [1,1] in diagonal to the piece in which is going to jump, but [9,10] will never be. Also if you play an invalid move or your code exceeds the time/memory limit while determining the move, you lose the game.

Starting state
The starting state of the game is the state of the board before the game starts.

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 0 2 0 2 0 2
2 0 2 0 2 0 2 0

First Input
This is the input give to the first player at the start of the game.

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 0 2 0 2 0 2
2 0 2 0 2 0 2 0
1
SAMPLE INPUT
0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 2
2 0 2 0 2 0 2 0
1
SAMPLE OUTPUT
2 5
2
4 3
6 1

Explanation

This is player 1’s turn, and the player will move the piece at [2,5] and will make two jumps. First jump will be at [4,3and second jump will be at [6,1]

After his/her move the state of game becomes:

0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 2 0 2 0 2
2 0 2 0 2 0 2 0

This state will be fed as input to program of player 2.

Other valid move for the first player is

2 5
1
3 6

But the following are invalid moves.
Case 1:

2 5
1
4 3

Because after making a jump its possible to jump again and its mandatory to jump as long as its possible to jump.

Case 2:

2 5
2
4 3
5 4

Because after making a jump its invalid to move to diagonally adjacent cell.

Here is the code of the Random Bot.

Time Limit:1.0 sec(s) for each input file.
Memory Limit:256 MB
Source Limit:1024 KB

Solution

This is the solution submitted by me

HackerEarth: Battle Of Bots #5: Reversi

Problem:

Reversi is a two player board game which is played on a 10 x 10 grid of cells. Each player has an allocated color, Black ( First Player ) or White ( Second Player ) being conventional. Players take turns placing a stone of their color on a single cell. A player must place a stone on the board, in such a position that there exists at least one straight (horizontal, vertical, or diagonal) occupied line between the new stone and another stone of same color, with one or more contiguous other color stone between them.

During a game, any stone of the opponent’s color that are in a straight line and bounded by the stone just placed and another stone of the current player’s color are turned over to the current player’s color. The game will end when the board is completely filled or both the players don’t have any move left. At the end of the game the player with majority of stone will win.

We will play it on an 10 x 10 grid. The top left of the grid is [0,0] and the bottom right is [9,9]. The rule is that a cell[i,j] is connected to any of top, left, right, or bottom cell.

Input:
The input will be a 10 x 10 matrix consisting only of 0,1,2 or 3. Then another line will follow which will contain a number – 1 or 2 which is your player id.

In the given matrix, top-left is [0,0] and bottom-right is [9,9].

In cell[row,column], row increases from top to bottom and column increases from left to right.

The cell marked 0 means it doesn’t contain any stones. The cell marked 1 means it contains first player’s stone which is Black in color. The cell marked 2 means it contains second player’s stone which is white in color. The cell marked 3 means it is a valid place for player whose turn it is.

Output:
Print the coordinates of the cell separated by space, where you want to play your move. You must take care that you don’t print invalid coordinates. For example, [1] might be a valid coordinate in the game play if cell[i,j]=3, but [10] will never be. Also if you play an invalid move or your code exceeds the time/memory limit while determining the move, you lose the game.

Starting state
The starting state of the game is the state of the board before the game starts.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 1 0 0 0 0
0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

First Input
This is the input give to the first player at the start of the game.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0
0 0 0 3 2 1 0 0 0 0
0 0 0 0 1 2 3 0 0 0
0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1

Scoring
The scores are calculated by running tournament of all submissions. Your latest submission will be taken into tournament. Scores are assigned according to the Glicko-2 rating system. For more information and questions, see Bot problem judge.

SAMPLE INPUT

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0
0 0 0 3 2 1 3 0 0 0
0 0 0 0 2 2 0 0 0 0
0 0 0 3 1 1 2 3 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1
SAMPLE OUTPUT
4 3

Explanation

This is player 1’s turn, and the player puts his/her stone in cell[4,3].
After his/her move the state of game becomes:

0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 3 0 3 0 0 0 0  
0 0 0 1 1 1 0 0 0 0  
0 0 0 3 1 2 0 0 0 0  
0 0 0 3 1 1 2 0 0 0  
0 0 0 1 0 3 0 0 0 0  
0 0 3 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

This state will be fed as input to program of player 2.


Time Limit:1.0 sec(s) for each input file.
Memory Limit: 256 MB
Source Limit: 1024 KB
Marking Scheme:Marks are awarded if any testcase passes.
Allowed Languages:C, CPP, CLOJURE, CSHARP, D, ERLANG, FSHARP, GO, GROOVY, HASKELL, JAVA, JAVA8, JAVASCRIPT, JAVASCRIPT_NODE, LISP, LISP_SBCL, LUA, OBJECTIVEC, OCAML, OCTAVE, PASCAL, PERL, PHP, PYTHON, PYTHON3, R, RACKET, RUBY, RUST, SCALA, SWIFT, VB

My Solution:

CodeEval: PASS TRIANGLE

CHALLENGE DESCRIPTION:

By starting at the top of the triangle and moving to adjacent numbers on the row below, the maximum total from top to bottom is 27.

   5
  9 6
 4 6 8
0 7 1 5

5 + 9 + 6 + 7 = 27

INPUT SAMPLE:

Your program should accept as its first argument a path to a filename. Input example is the following:

5
9 6
4 6 8
0 7 1 5

You make also check full input file which will be used for your code evaluation.

OUTPUT SAMPLE:

The correct output is the maximum sum for the triangle. So for the given example the correct answer would be 27

Solution

HackerRank: Alternating Characters

Problem

Shashank likes strings in which consecutive characters are different. For example, he likes ABABA, while he doesn’t like ABAA. Given a string containing characters A and B only, he wants to change it into a string he likes. To do this, he is allowed to delete the characters in the string.

Your task is to find the minimum number of required deletions.

Input Format

The first line contains an integer T, i.e. the number of test cases.
The next T lines contain a string each.

Output Format

For each test case, print the minimum number of deletions required.

Constraints

1T10
1≤ length of string 10^5

Sample Input

5
AAAA
BBBBB
ABABABAB
BABABA
AAABBB

Sample Output

3
4
0
0
4

Explanation

AAAA A, 3 deletions
BBBBB B, 4 deletions
ABABABAB ABABABAB, 0 deletions
BABABA BABABA, 0 deletions
AAABBB AB, 4 deletions because to convert it to AB we need to delete 2 A’s and 2 B’s

Solution

HackerRank: Paint The Tiles

Problem

Nikita has a line of N tiles indexed from 0 to N−1. She wants to paint them to match a color configuration, C, which is comprised of 2 colors: Red(R) and Blue(B)

In one stroke, Nikita can paint 1 or more adjacent tiles a single color. After she finishes painting, each tile(i) should be painted color C(i).

It should be noted that it is not allowed to apply more than 1 stroke on a tile.

Given the required color configuration, find and print the minimum number of strokes required for Nikita to paint all N tiles.

Note: In a line of tiles, 2 tiles with the indices i and j are considered adjacent only if |ji|=1.

Input Format

The first line contains a single integer, N, denoting the number of tiles to be painted.
The second line contains a string, C, denoting the desired color configuration.

For each character C(i) in C:

  • If C(i)=“R”, it means the ith tile must be painted red.
  • If C(i)=“B”, it means the ith tile must be painted blue.

Constraints

  • 1N1000
  • C(i){“R”, “B”}

Output Format

Print the minimum number of strokes required to paint all tiles in the desired color configuration.

Sample Input 0

5  
RRRRR

Sample Output 0

1

Sample Input 1

5  
RRBRR

Sample Output 1

3

Sample Input 2

5  
BRBRB

Sample Output 2

5

Explanation

Sample Case 0:

Nikita will paint all 5 consecutive tiles red in a single stroke:

Sample Case 1:

Nikita will need 3 strokes to paint all 5 tiles:

Solution: 

System Design Interview Prep Material

System design is a very broad topic. Even a software engineer with many years of working experience at top IT company may not be an expert on system design. If you want to become an expert, you need to read many books, articles, and solve real large scale system design problems. This repository only teaches you to handle the system design interview with a systematic approach in a short time. You can dive into each topic if you have time. Of course, welcome to add your thoughts!

Table of Contents

System Design Interview Tips:

  • Clarify the constraints and identify the user cases Spend a few minutes questioning the interviewer and agreeing on the scope of the system. Remember to make sure you know all the requirements the interviewer didn’t tell your about in the beginning. User cases indicate the main functions of the system, and constraints list the scale of the system such as requests per second, requests types, data written per second, data read per second.
  • High-level architecture design Sketch the important components and the connections between them, but don’t go into some details. Usually, a scalable system includes web server (load balancer), service (service partition), database (master/slave database cluster plug cache).
  • Component design For each component, you need to write the specific APIs for each component. You may need to finish the detailed OOD design for a particular function. You may also need to design the database schema for the database.

Basic Knowledge about System Design:

Here are some articles about system design related topics.

Of course, if you want to dive into system related topics, here is a good collection of reading list about services-engineering, and a good collection of material about distributed systems.

Company Engineering Blogs:

If you are going to have an onsite with a company, you should read their engineering blog.

Products and Systems:

The following papers/articles/slides can help you to understand the general design idea of different real products and systems.

Hot Questions and Reference:

There are some good references for each question. The references here are slides and articles.
Design a CDN network Reference:

Design a Google document system Reference:

Design a random ID generation system Reference:

Design a key-value database Reference:

Design the Facebook news feed function Reference:

Design the Facebook timeline function Reference:

Design a function to return the top k requests during past time interval Reference:

Design an online multiplayer card game Reference:

Design a graph search function Reference:

Design a picture sharing system Reference:

Design a search engine Reference:

Design a recommendition system Reference:

Design a tinyurl system Reference:

Design a garbage collection system Reference:

Design a scalable web crawling system Reference:

Design the Facebook chat function Reference:

Design a trending topic system Reference:

Design a cache system Reference:

Good Books:

Object Oriented Design:

Tips for OOD Interview

Clarify the scenario, write out user cases Use case is a description of sequences of events that, taken together, lead to a system doing something useful. Who is going to use it and how they are going to use it. The system may be very simple or very complicated. Special system requirements such as multi-threading, read or write oriented.
Define objects Map identity to class: one scenario for one class, each core object in this scenario for one class. Consider the relationships among classes: certain class must have unique instance, one object has many other objects (composition), one object is another object (inheritance). Identify attributes for each class: change noun to variable and action to methods. Use design patterns such that it can be reused in multiple applications.

Useful Websites

Original Source