Fetch GET parameters in JS/jQuery

If you have a URL with some GET parameters as follows:

www.test.com/t.html?a=1&b=3&c=m2-m3-m4-m5 

and need to get the values of each parameters then below is a nifty piece of code solving your requirement.

JavaScript has nothing built in for handling query string parameters.

You could access location.search, which would give you from the ? character on to the end of the URL or the start of the fragment identifier (#foo), whichever comes first.

You can then access QueryString.c


HackerRank: Repeated String

Problem

Lilah has a string, s, of lowercase English letters that she repeated infinitely many times.

Given an integer, n, find and print the number of letter a‘s in the first letters of Lilah’s infinite string.

Input Format

The first line contains a single string, s.
The second line contains an integer, n.

Constraints

  • 1<=|s|<=100
  • 1<=|n|<=10^12
  • For 25% of the test cases, n <= 10^6

Output Format

Print a single integer denoting the number of letter a’s in the first letters of the infinite string created by repeating infinitely many times.

Sample Input 0

aba
10

Sample Output 0

7

Explanation 0

The first n = 10 letters of the infinite string are abaabaabaa. Because there are 7 a‘s, we print on a new line.

Sample Input 1

a
1000000000000

Sample Output 1

1000000000000

Explanation 1

Because all of the first n=1000000000000 letters of the infinite string are a, we print 1000000000000 on a new line.

Solution


Design Pattern: Factory Pattern

Factory Pattern is one of the most used design patterns in Java. It is an Creational Pattern, providing one of the best ways to create an object. The pattern enables the code to choose which implementation to call at run time based on arguments provided to the Factory. Thus helping to create generic and maintainable code. The pattern also allows the developer the ease of adding new types of implementations without changing the old code.

In Factory pattern, we create object without exposing the creation logic to the client and refer to newly created object using a common interface.

Implementation

The demo code shown below demonstrates Pizza variations and based on the argument type passed to it, the factory will return the type of Pizza requested for.

For demo purpose, the code only shows for Cheese, Veg and Fresh Pan Pizza only.

factory-pattern

Pros and Cons:

Pro’s:

  • Allows you to hide implementation of an application seam (the core interfaces that make up your application)
  • Allows you to easily test the seam of an application (that is to mock/stub) certain parts of your application so you can build and test the other parts
  • Allows you to change the design of your application more readily, this is known as loose coupling

Con’s

  • Makes code more difficult to read as all of your code is behind an abstraction that may in turn hide abstractions.
  • Can be classed as an anti-pattern when it is incorrectly used, for example some people use it to wire up a whole application when using an IOC container, instead use Dependency Injection.

Apache Commons DbUtils Mini Wrapper

This is a very small DB Connector code in Java as a wrapper class to Apache DBUtils.

The Commons DbUtils library is a small set of classes designed to make working with JDBC easier. JDBC resource cleanup code is mundane, error prone work so these classes abstract out all of the cleanup tasks from your code leaving you with what you really wanted to do with JDBC in the first place: query and update data.

Some of the advantages of using DbUtils are:

  • No possibility for resource leaks. Correct JDBC coding isn’t difficult but it is time-consuming and tedious. This often leads to connection leaks that may be difficult to track down.
  • Cleaner, clearer persistence code. The amount of code needed to persist data in a database is drastically reduced. The remaining code clearly expresses your intention without being cluttered with resource cleanup.
  • Automatically populate Java Bean properties from Result Sets. You don’t need to manually copy column values into bean instances by calling setter methods. Each row of the Result Set can be represented by one fully populated bean instance.

DbUtils is designed to be:

  • Small – you should be able to understand the whole package in a short amount of time.
  • Transparent – DbUtils doesn’t do any magic behind the scenes. You give it a query, it executes it and cleans up for you.
  • Fast – You don’t need to create a million temporary objects to work with DbUtils.

DbUtils is not:

  • An Object/Relational bridge – there are plenty of good O/R tools already. DbUtils is for developers looking to use JDBC without all the mundane pieces.
  • A Data Access Object (DAO) framework – DbUtils can be used to build a DAO framework though.
  • An object oriented abstraction of general database objects like a Table, Column, or Primary Key.
  • A heavyweight framework of any kind – the goal here is to be a straightforward and easy to use JDBC helper library.

Wrapper:


HackerRank: Circular Array Rotation

Problem

John Watson performs an operation called a right circular rotation on an array of integers, [a(0),a(1).a(2)...a(n-2),a(n-1)]. After performing one right circular rotation operation, the array is transformed from

[a(0),a(1).a(2)...a(n-2),a(n-1)]

to

[a(n-1),a(0),a(1).a(2)...a(n-2)].

Watson performs this operation k times. To test Sherlock’s ability to identify the current element at a particular position in the rotated array, Watson asks q queries, where each query consists of a single integer, m, for which you must print the element at index in the rotated array (i.e., the value of a(m)).

Input Format

The first line contains space-separated integers, n, k, and q, respectively.
The second line contains space-separated integers, where each integer i describes array element a(i)(where 0 <= i <= n).
Each of the q subsequent lines contains a single integer denoting m.

Constraints

  • 0 <= i <= 10^5
  • 0 <= a(i) <= 10^5
  • 0 <= k <= 10^5
  • 0 <= q <= 500
  • 0 <= m <= N-1

Output Format

For each query, print the value of the element at index m of the rotated array on a new line.

Sample Input
3 2 3
1 2 3
0
1
2
Sample Output
2
3
1

Explanation

After the first rotation, the array becomes [3,1,2].
After the second (and final) rotation, the array becomes [2,3,1].

Let’s refer to the array’s final state as array b. For each query, we just have to print the value of b(m) on a new line:

  • m=0 , so we print 2 on a new line.
  • m=1 , so we print 3 on a new line.
  • m=2 , so we print 1 on a new line.

Soluton


HackerEarth: Battle Of Bots 6: Draughts

Problem:

Sample Game

Draughts is a two player board game which is played on a 8X8 grid of cells and is played on opposite sides of the game-board. Each player has an allocated color, Red ( First Player ) or White ( Second Player ) being conventional. Players take turns involving diagonal moves of uniform game pieces in the forward direction only and mandatory captures by jumping over opponent pieces.

Rules:

  • Player can only move diagonally to the adjacent cell and in forward direction, if the diagonally adjacent cell is vacant.
  • A player may not move an opponent’s piece.
  • If the diagonally adjacent cell contains an opponent’s piece, and the cell immediately beyond it is vacant, the opponent’s piece may be captured (and removed from the game) by jumping over it in the forward direction only.
  • If a player made a jump, then its mandatory to keep on jumping as long as the jump is possible.
  • Player cannot move to the diagonally adjacent cell once the player made a jump.

The game will end when any of the players don’t have any move left. At the end of the game the player with majority of pieces will win.

We will play it on an 8X8 grid. The top left of the grid is [0,0] and the bottom right is [7,7].

Input:
The input will be a 8X8 matrix consisting only of 0o2. Then another line will follow which will contain a number –  1 or 2 which is your player id. In the given matrix, top-left is [0,0] and bottom-right is [7,7]. The x-coordinate increases from left to right, and y-coordinate increases from top to bottom.

The cell marked 0 means it doesn’t contain any stones. The cell marked 1 means it contains first player’s stone which is Red in color. The cell marked 2 means it contains second player’s stone which is white in color.

Output:
In the first line print the coordinates of the cell separated by space, the piece he / she wants to move.
In second line print an integer N, number of steps or jumps the piece will make in one move.
In the next N lines print the coordinates of the cells in which the piece will make jump.
You must take care that you don’t print invalid coordinates. For example, [1,1] might be a valid coordinate in the game play if [1,1] in diagonal to the piece in which is going to jump, but [9,10] will never be. Also if you play an invalid move or your code exceeds the time/memory limit while determining the move, you lose the game.

Starting state
The starting state of the game is the state of the board before the game starts.

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 0 2 0 2 0 2
2 0 2 0 2 0 2 0

First Input
This is the input give to the first player at the start of the game.

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 0 2 0 2 0 2
2 0 2 0 2 0 2 0
1
SAMPLE INPUT
0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 2
2 0 2 0 2 0 2 0
1
SAMPLE OUTPUT
2 5
2
4 3
6 1

Explanation

This is player 1’s turn, and the player will move the piece at [2,5] and will make two jumps. First jump will be at [4,3and second jump will be at [6,1]

After his/her move the state of game becomes:

0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 2 0 2 0 2
2 0 2 0 2 0 2 0

This state will be fed as input to program of player 2.

Other valid move for the first player is

2 5
1
3 6

But the following are invalid moves.
Case 1:

2 5
1
4 3

Because after making a jump its possible to jump again and its mandatory to jump as long as its possible to jump.

Case 2:

2 5
2
4 3
5 4

Because after making a jump its invalid to move to diagonally adjacent cell.

Here is the code of the Random Bot.

Time Limit:1.0 sec(s) for each input file.
Memory Limit:256 MB
Source Limit:1024 KB

Solution

This is the solution submitted by me


Converting Java BufferedImage to OpenCV Mat and vice versa

The code below allows us to convert BufferedImage to Mat (in OpenCV) and vice versa.

This becomes handy when getting images from network or certain other sources:


REST Application in Java

Below are the basic steps to create a working REST API Application in java, using Eclipse.
The demo shows just a “To Uppercase String” application

Steps:

  • In Eclipse, create a new Project(Dynamic Web Project)
  • Create the new Project and give it a suitable name.
  • after project creation, right click on the project, and select Configure-> Convert to Maven Project
  • After process completion, a pom.xml would be made available.
  • Add the dependencies from the pom.xml that I have presented below.
  • Create new Class as sample shown below and create methods that you need to expose.
  • Add business logic as per need.
  • Add Annotations to the class as shown below
  • In the Web Content folder, modify the web.xml as shown in the sample web.xml

The basic mode is complete. Now just configure your local web server and deploy your application to the web server.

Use any REST Client like Postman(Chrome Plugin) to test the app.

Code Samples


HackerEarth: Battle Of Bots #5: Reversi

Problem:

Reversi is a two player board game which is played on a 10 x 10 grid of cells. Each player has an allocated color, Black ( First Player ) or White ( Second Player ) being conventional. Players take turns placing a stone of their color on a single cell. A player must place a stone on the board, in such a position that there exists at least one straight (horizontal, vertical, or diagonal) occupied line between the new stone and another stone of same color, with one or more contiguous other color stone between them.

During a game, any stone of the opponent’s color that are in a straight line and bounded by the stone just placed and another stone of the current player’s color are turned over to the current player’s color. The game will end when the board is completely filled or both the players don’t have any move left. At the end of the game the player with majority of stone will win.

We will play it on an 10 x 10 grid. The top left of the grid is [0,0] and the bottom right is [9,9]. The rule is that a cell[i,j] is connected to any of top, left, right, or bottom cell.

Input:
The input will be a 10 x 10 matrix consisting only of 0,1,2 or 3. Then another line will follow which will contain a number – 1 or 2 which is your player id.

In the given matrix, top-left is [0,0] and bottom-right is [9,9].

In cell[row,column], row increases from top to bottom and column increases from left to right.

The cell marked 0 means it doesn’t contain any stones. The cell marked 1 means it contains first player’s stone which is Black in color. The cell marked 2 means it contains second player’s stone which is white in color. The cell marked 3 means it is a valid place for player whose turn it is.

Output:
Print the coordinates of the cell separated by space, where you want to play your move. You must take care that you don’t print invalid coordinates. For example, [1] might be a valid coordinate in the game play if cell[i,j]=3, but [10] will never be. Also if you play an invalid move or your code exceeds the time/memory limit while determining the move, you lose the game.

Starting state
The starting state of the game is the state of the board before the game starts.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 1 0 0 0 0
0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

First Input
This is the input give to the first player at the start of the game.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0
0 0 0 3 2 1 0 0 0 0
0 0 0 0 1 2 3 0 0 0
0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1

Scoring
The scores are calculated by running tournament of all submissions. Your latest submission will be taken into tournament. Scores are assigned according to the Glicko-2 rating system. For more information and questions, see Bot problem judge.

SAMPLE INPUT

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0
0 0 0 3 2 1 3 0 0 0
0 0 0 0 2 2 0 0 0 0
0 0 0 3 1 1 2 3 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1
SAMPLE OUTPUT
4 3

Explanation

This is player 1’s turn, and the player puts his/her stone in cell[4,3].
After his/her move the state of game becomes:

0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 3 0 3 0 0 0 0  
0 0 0 1 1 1 0 0 0 0  
0 0 0 3 1 2 0 0 0 0  
0 0 0 3 1 1 2 0 0 0  
0 0 0 1 0 3 0 0 0 0  
0 0 3 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

This state will be fed as input to program of player 2.


Time Limit:1.0 sec(s) for each input file.
Memory Limit: 256 MB
Source Limit: 1024 KB
Marking Scheme:Marks are awarded if any testcase passes.
Allowed Languages:C, CPP, CLOJURE, CSHARP, D, ERLANG, FSHARP, GO, GROOVY, HASKELL, JAVA, JAVA8, JAVASCRIPT, JAVASCRIPT_NODE, LISP, LISP_SBCL, LUA, OBJECTIVEC, OCAML, OCTAVE, PASCAL, PERL, PHP, PYTHON, PYTHON3, R, RACKET, RUBY, RUST, SCALA, SWIFT, VB

My Solution:


How to determine which jar a class is loaded from?

When the method that contains this sniplet is called, it will print out something like:

file://path/to/deployment/lib/detected.jar

Will the codeSource be null? The answer is yes. When a jar file is loaded by the system class loader, it’s codeSource will be null. What jars will be loaded by the system class loader? the rule of thumb is that all the jars in the class path (not the ones you package in your application) will be loaded by the system class loader. Obviously the above code can’t used to find out which jar a class is loaded from, if the jar is loaded by the system class loader. You can use the “verbose” java command line argument when you start the application:

java -verbose app

it will print out every class in each jar the system class loader loads, ie:

[Opened C:\dev\bea\JDK160~1\jre\lib\rt.jar]
[Loaded java.lang.Object from C:\dev\bea\JDK160~1\jre\lib\rt.jar]
[Loaded java.io.Serializable from C:\dev\bea\JDK160~1\jre\lib\rt.jar]
[Loaded java.lang.Comparable from C:\dev\bea\JDK160~1\jre\lib\rt.jar]
[Loaded java.lang.CharSequence from C:\dev\bea\JDK160~1\jre\lib\rt.jar]
[Loaded java.lang.String from C:\dev\bea\JDK160~1\jre\lib\rt.jar]
[Loaded java.lang.reflect.GenericDeclaration from C:\dev\bea\JDK160~1\jre\lib\rt.jar]

Source