#StackBounty: #r #hypothesis-testing #generalized-linear-model #linear-model #meta-analysis Testing complex hypotheses involving glm/li…

Bounty: 50

I have one independent variable (X) and three dependent variables (W, Y and Z). I am fitting a generalized linear model to each:

$Y = g(alpha X + epsilon)$

$Z = g(beta X + epsilon)$

$W = g(gamma X + epsilon)$

I solve the above in R and get estimates for $alpha, beta, gamma$ along with p-values that they are not zero.

However, what I am really interested in is a complex hypothesis such as the following:
$ H_0 : |alpha – gamma| < |beta – gamma|$ and $(alpha – gamma)(beta – gamma) > 0$

$H_1 : |alpha – gamma| > |beta – gamma|$ if $(alpha – gamma)(beta – gamma) > 0 $ or $(alpha – gamma)(beta – gamma) < 0 $

  1. I’d like to get a p-value for the above hypothesis, and if possible
  2. an “effect size” for something like the estimate of

    $s = (alpha – beta)$ if $H_1$, 0 otherwise

How would I go about doing this? If this is too complicated to explain, how would I test any non-trivial hypothesis involving glm coefficients? Could we use the estimates and their distributions? Or could we transform it into an equivalent model whose coefficient has the same p-value?

ps. I am actually solving the glms in LIMMA.


Get this bounty!!!

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.