*Bounty: 50*

*Bounty: 50*

Suppose there are two groups, A and B, and we are interested in inferring a certain parameter for each one and also the difference between the two parameters. Here we can take a Bayesian perspective and strive for a posterior distribution in each case. I am wondering if the following is a sound way of doing this:

- estimate the posterior for group A,
- estimate the posterior for group B, and
- estimate the posterior of the difference by sampling extensively the first two posteriors and taking the difference.

I am specifically unsure about this kind of divide-and-conquer approach where each group is treated separately, and then the results are combined. Usually, it is done in one take where, perhaps, a linear model is fitted with an indicator for the group membership.

Let me give a simple example. Say, the outcome is binary. One can then use a Bernoulli–beta model to infer the posterior of the success probability, which will be a beta distribution for each group. As the last step, one can sample the two betas and get a posterior for the difference.