#StackBounty: #deep-learning #neural-network #convolutional-neural-network #autoencoder Autoencoder not learning walk forward image tra…

Bounty: 50

I have a series of 15 frames with (60 rows x 50 columns). Over the course of those 15 frames, the moon moves from the top left to the bottom right.

Data = https://github.com/aiqc/AIQC/tree/main/remote_datum/image/liberty_moon

enter image description here

enter image description here

enter image description here

As my input data I have a 60×50 image. As my evaluation label I have a 60×50 image from 2 frames later. All are divided by 255.

I am attempting an autoencoder.

    model = keras.models.Sequential()
    model.add(layers.Conv1D(64*hp['multiplier'], 3, activation='relu', padding='same'))
    model.add(layers.MaxPool1D( 2, padding='same'))
    model.add(layers.Conv1D(32*hp['multiplier'], 3, activation='relu', padding='same'))
    model.add(layers.MaxPool1D( 2, padding='same'))
    model.add(layers.Conv1D(16*hp['multiplier'], 3, activation='relu', padding='same'))
    model.add(layers.MaxPool1D( 2, padding='same'))

    model.add(layers.Conv1D(16*hp['multiplier'], 3, activation='relu', padding='same'))
    model.add(layers.UpSampling1D(2))
    model.add(layers.Conv1D(32*hp['multiplier'], 3, activation='relu', padding='same'))
    model.add(layers.UpSampling1D(2))
    model.add(layers.Conv1D(64*hp['multiplier'], 3, activation='relu'))
    model.add(layers.UpSampling1D(2))

    model.add(layers.Conv1D(50, 3, activation='sigmoid', padding='same'))
    # last layer tried sigmoid with BCE loss.
    # last layer tried relu with MAE.

Tutorials say to use a final layer of sigmoid and BCE loss, but the values I’m producing must not be between 0-1 because the loss goes way negative.

enter image description here

If I use a final layer of relu with MAE loss it claims to learn something.

enter image description here

But the predicted image is notttt great:

enter image description here


Get this bounty!!!

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.